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Abstract. We investigate the inverse source problem of electrostatics in a bounded and convex
domain with compactly supported source. We try to extract all information about the unknown
source support from the given Cauchy data of the associated potential, adopting by this previous
work of Kusiak and Sylvester to the case of electrostatics. We introduce, and for the unit disk we
also compute numerically, what we call the discoidal source support, i.e., the smallest set made up by
the intersection of disks within the domain, which carries a source compatible with the given data.
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1. Introduction. In a series of papers [6, 11, 12, 14, 16, 17], Kusiak and
Sylvester, with varying coauthors, have developed the concept of convex scattering
support, which is meant to be the smallest convex set that contains a scattering source
compatible with the far field of a scattered wave. The purpose of the present paper is
a corresponding theory for the case of electrostatics in a bounded domain, to facilitate
a deeper understanding of this matter.

To set the stage, consider the Poisson equation in a bounded and convex domain
D ⊂ R2 with natural boundary condition, i.e.,

∆u = F in D,
∂u

∂ν
= 0 on ∂D,

∫

∂D

u ds = 0, (1.1)

where ν denotes the exterior unit normal of ∂D. For our purpose we consider the
source F to be a distribution with vanishing mean and compact support suppF ⊂ D;
then the direct problem (1.1) has a well-defined unique solution in a distributional
sense, see Sect. 2. In the inverse problem that we are interested in one seeks to
gather all information about F that can be obtained from the Dirichlet boundary
data g = u|∂D of u. By comparing the dimensions of these two quantities it is obvious
that knowledge of g does not suffice to reconstruct the source F uniquely; in general,
not even the support of F can be determined this way. However, following Kusiak
and Sylvester, one can ask for the smallest set within a certain system of sets that
carries a distributional source F which is compatible with the given data g.

A very related problem is the following: Consider the Cauchy problem

∆u = 0 in H, u = g on ∂D,
∂u

∂ν
= 0 on ∂D, (1.2)

which is known to have a unique solution in a neighborhood H of ∂D, and ask for
the set

Hg = {x ∈ D : u can be continued analytically to a neighborhood of x} . (1.3)
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2 M. HANKE, N. HYVÖNEN, M. LEHN, AND S. REUSSWIG

In particular, Hg = ∅ if (1.2) has no local solution. While the sources that carry the
data are not uniquely determined, Hg is, and therefore, in principle, is computable;
however, its computation is extremely susceptible to all kinds of numerical errors.

The set Hg was defined in an analogous way by Kusiak and Sylvester [11] in the
scattering context, and has proved useful in their analysis of the associated inverse
source problem. A more careful inspection of the set Hg, however, reveals that there
need not be a single valued harmonic function u which solves (1.2) in all of Hg, see
Examples 3 and 4 below. In this case there is no compatible source in D \Hg, which
indicates that Hg may be too large a set to be really useful, both in electrostatics as
well as in inverse scattering. This is discussed in detail in Sect. 3.

The Kusiak and Sylvester convex scattering support concept has at least two
natural analogs in our setting with a bounded domain D, namely the convex source
support and the discoidal source support, both to be introduced rigorously in Sect. 4.
While the former is somewhat more natural and more easy to deal with theoretically,
the latter is more suitable for numerical computations, at least when D is the unit
disk; a corresponding algorithm is outlined in Sect. 5. Finally, in Sect. 6 we briefly
investigate the interplay between the convex and discoidal source supports on the
one hand, and the singularities of solutions of the Cauchy problem (1.2) on the other
hand.

While the inverse source problem is of independent interest, e.g., in electroen-
cephalography (cf., e.g., El Badia [5] and Hämäläinen et al [7]), our primary interest
concerns a related problem in electric impedance tomography, cf., e.g., Borcea [2]. To
be more precise, if the examined body has constant background conductivity which
is perturbed by a compactly supported inhomogeneity, difference boundary data of
impedance tomography can be interpreted as the Dirichlet boundary condition to
(1.1), with the corresponding source supported in the inhomogeneity. Thus, gathering
information on this source results in information on the location of this inhomogene-
ity. We refer to [8] for a detailed treatment of this application and corresponding
numerical results.

2. The setting. We consider the Poisson equation (1.1) with homogeneous Neu-
mann boundary condition in a smooth bounded and convex domain D ⊂ R2, where
F is taken from the space of compactly supported mean free distributions

E ′
�(D) = {v ∈ E ′(D) | 〈v, 1〉 = 0} .

Here 〈·, ·〉 : E ′(D) × C∞(D) → C denotes the dual evaluation between compactly
supported distributions and smooth functions in D.

Lemma 2.1. Let F ∈ E ′
�(D) ∩H l(D) for l ∈ Z. Then the forward problem (1.1)

has a unique solution u in H l+2(D). Moreover, u|∂D ∈ C∞(∂D).
Proof. Since F ∈ H l(D) is mean free and compactly supported away from the

boundary ∂D, the unique existence of the solution to (1.1) follows from Remark 7.2 of
Chapter 2 in Lions and Magenes [13]. The smoothness of the solution away from the
support of the source is a consequence of the standard regularity theory for elliptic
partial differential equations.

Corollary 2.2. Let F ∈ E ′
�(D). Then the forward problem (1.1) has a unique

solution u in ∪m∈ZH
m(D). Moreover, u|∂D ∈ C∞(∂D).

Proof. Since F is a compactly supported distribution on D, it belongs to H l(D)
for some l ∈ Z, cf., e.g., Dautray and Lions [4]. Hence, Lemma 2.1 tells us that there
exists a unique solution of (1.1) in H l+2(D) with smooth Dirichlet boundary value on
∂D.
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Let u1, u2 ∈ ∪m∈ZH
m(D) be two solutions of (1.1). Then there exists M ≤ l such

that u1, u2 ∈ HM+2(D). Since F ∈ H l(D) ⊂ HM (D), it follows from Lemma 2.1
that u1 = u2.

Due to Corollary 2.2 the following operator is well defined:

L :

{

F 7→ u|∂D,

E ′
�(D) → C∞

� (∂D),

where u is the solution of (1.1) corresponding to the source F , and C∞
� (∂D) denotes

the space of smooth mean free functions on ∂D. In what follows, we will try to extract
information about the support of F from the boundary measurement LF .

Finally, let us fix a few notations: We shall write Nε(Ω) for the open epsilon
neighborhood of a set Ω, i.e.,

Nε(Ω) = {x ∈ R
2 | dist(x,Ω) < ε},

where dist(x,Ω) = infy∈Ω |x − y|. We also write Br(x) for the open disk of radius
r around x ∈ R2. When x = 0, we will omit the argument and simply write Br.
Repeatedly, we will turn to polar coordinates x = (r cos θ, r sin θ) with r ≥ 0 and
θ ∈ (−π, π], and write u(r, θ) instead of u(x), by slight abuse of notation. In a similar
fashion we will write g(θ) for the Dirichlet values of u at x = (cos θ, sin θ).

3. The simply connected source support. Following Kusiak and
Sylvester [11] we first adopt what they call scattering support for our purposes.

Definition 3.1. The infinity support supp∞F of a distribution F is the closure
of the set of points that cannot be connected with infinity without intersecting the
support of F . The ( simply connected) source support Sg of g ∈ C∞

� (∂D) is defined
to be

Sg =
⋂

LF=g

supp∞F. (3.1)

If g /∈ R(L) then we let Sg = D.
It turns out, that there is an intimate relationship between Sg and Hg.
Theorem 3.2. Let Hg be defined by (1.3). Then there holds Sg = D \ Hg.
Proof. The result is trivially correct, if g /∈ R(L). Consider next the case g ∈

R(L), and let F be any source that is compatible with g. Then the solution u of (1.1)
solves the Cauchy problem (1.2) in H = D \ supp∞F , and hence,

supp∞F ⊃ D \ Hg. (3.2)

Taking the intersection over all compatible sources we thus obtain that D \Hg ⊂ Sg.
Now, given any x ∈ Hg, we can find a domain Hx ⊂ D with

x ∈ Hx and ∂D ⊂ ∂Hx, (3.3)

and a function u which solves (1.2) in H = Hx, cf. Figure 3.1 for an illustration.
Without loss of generality we can assume that D \Hx and even Nε(D \Hx) is simply
connected for some small ε > 0, and that the latter set does not contain x. Next, we
let

uε =

{

u in D \Nε(D \Hx),

0 in Nε(D \Hx),



4 M. HANKE, N. HYVÖNEN, M. LEHN, AND S. REUSSWIG

PSfrag replacements Hx
x

D

Fig. 3.1. The set Hx of (3.3)

and observe that uε belongs to L2(D) and Fε = ∆uε ∈ H−2(D) ∩ E ′
�(D) is a source

which is compatible with the data and satisfies supp∞F ⊂ Nε(D \Hx). Therefore,
Sg ⊂ Nε(D \Hx), which implies that x /∈ Sg. This shows that Hg ⊂ D \ Sg, i.e.,
that Sg ⊂ D \ Hg, and the proof is complete.

To enhance intuition we provide the following four examples, in all of which D is
chosen to be the unit disk.

Example 1. Let N(x; z) be the Neumann function of the Laplacian in the
unit disk D. If z1 and z2 are two distinct points in the unit disk, then define u =
N( · ; z1) − N( · ; z2) and g = u|∂D. The potential u solves the associated source
problem (1.1), where F is the difference of two delta distributions located in z = z1
and z = z2. Since u is harmonic in D\{z1, z2}, Hg coincides with D, with the possible
exception of the two points z1 and z2. In fact, by the uniqueness of the solution of
the Cauchy problem, one can deduce that there is no analytic continuation of these
Cauchy data across the two singularities z1 and z2. Thus, according to Theorem 3.2,
we have Sg = {z1, z2}.

Example 2. In the next example, let the true source be given in polar coordinates
by F (r, θ) = −48 cos θ for 0 < r < 1/2, and by zero elsewhere. Then the solution u of
(1.1) is given by

u(r, θ) =

{

(13 r − 16 r2) cos θ, 0 < r ≤ 1/2,

(r + r−1) cos θ, 1/2 < r ≤ 1,

and its Dirichlet values on ∂D are g(θ) = 2 cos θ. Next, define for any 0 < R < 1 the
potential

uR(r, θ) =

{(

(1 + 3R−2) r − 2R−3r2
)

cos θ, 0 < r ≤ R,

(r + r−1) cos θ, R < r ≤ 1,

with the same Neumann and Dirichlet values on ∂D. uR satisfies

∆uR(r, θ) = FR(r, θ) =

{

−6R−3 cos θ, 0 < r ≤ R,

0 , R < r ≤ 1,

with supp∞FR = BR. It follows that Sg ⊂ {0}, and it remains to investigate whether
0 ∈ Sg, or not. To this end we first observe that u0(r, θ) = (r + r−1) cos θ solves
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Fig. 3.2. The potential u of Example 3

the Cauchy problem (1.2) in H = D \ {0}, and then conclude that 0 /∈ Hg. For, if
0 ∈ Hg then there exists a solution ũ0 of the Cauchy problem 1.2 in some set H0

which connects a neighborhood of x = 0 with a neighborhood of ∂D. However, near
∂D, ũ0 and u0 must coincide by the uniqueness of the Cauchy problem, and since u0

is defined in all of H0 \ {0}, the two functions must agree by the unique continuation
principle for harmonic functions. Now, since u0 is unbounded near x = 0 this gives
the desired contradiction. Therefore, Sg = {0} for this example.

Example 3. For our third example, we choose ũ(x) = arg(x−1/2)−arg(x+1/2),
where the function arg returns the polar angle θ ∈ (−π, π] of its argument. While
ũ fails to have homogeneous Neumann boundary values on ∂D, a simple symmetry
argument reveals that its Neumann boundary values have vanishing mean. Thus, we
can find an appropriate function u0, harmonic in D, and with the same Neumann
data as ũ on ∂D. (In fact, u0 can be obtained by reflecting −ũ at ∂D.) The function
u = ũ−u0 has vanishing Neumann data and vanishing mean on ∂D, and is harmonic in
D, except for the interval [−1/2, 1/2], across which u is discontinuous. Thus, F = ∆u
is a source supported on that line segment. Figure 3.2 provides a color coded plot of u;
the support of F is shown as a bold black line. Note, however, that u can be continued
analytically across the open interval (−1/2, 1/2) when coming from either of the two
sides, and hence, Hg = D \ {±1/2}, and Sg = {±1/2} for g = u|∂D. Nonetheless, by
the uniqueness of the Cauchy problem, there is no single valued harmonic function
that has the same Cauchy data as u in H = Hg, nor in H = D \ Nε({±1/2}) for
sufficiently small ε > 0.

Example 3 supports a conjecture by Kusiak and Sylvester, cf. [11, p. 1531], since
here neither Sg nor a small neighborhood of Sg supports a compatible source. The
next example addresses another question raised in [11], namely whether Sg may be
the empty set for admissible nonzero functions g ∈ R(L).

Example 4. Consider the rational function

r(w) =
w3 + 1/27

w2 + 1/9
, w ∈ C ,

and take U to be the real part of the threefold inverse function W = r−1 of r over
z ∈ C. The corresponding manifold is shown in Figure 3.3. Note that every branch of
U is locally harmonic (as a function of the two real variables Re z and Im z), except
for four singularities. These singularities are caused by multiple roots of the equation
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Fig. 3.3. The threefold potential U of Example 4

r(w) = z, i.e., by zeros of r′(w), which are given as the (mutually different) solutions
w1, . . . , w4 of the polynomial equation

w4 +
1

3
w2 −

2

27
w = 0 .

Since r′′(wi) 6= 0 for i = 1, . . . , 4, it follows that each point zi = r(wi), i = 1, . . . , 4,
is a singularity of two associated branches of U , but not of the third one. Finally, as
z → ∞, the three values of U behave like the real parts of

W1(z) = z +O(z−1) , W2/3(z) = ±
i

3
−

1 ± i

18
z−1 +O(z−2) , z → ∞ ,

respectively. Moreover, the real part U1 of W1 is a harmonic function in the exterior
of the unit disk, which extends into a neighborhood of ∂D inside the unit disk.

Figure 3.4 shows a color coded plot of two possible extensions of U1 inside the
unit disk D: the dashed circle in the left-hand plot depicts the radius of convergence
of the Laurent series representing U1 near infinity, and in either plot the four small
circles indicate the locations of the singularities z1, . . . , z4. Two of them sit on the
dashed curve, the other two are on the real (i.e., horizontal) axis; all of them are near
or on the two boldfaced curves which mark the discontinuities of the two potentials.
Note that in the left hand plot the extension of U1 is harmonic in a neighborhood of
the two real singularities of U .

It follows that the boldfaced curves support distributional sources that are com-
patible with the Cauchy data of U1. A third compatible source is obtained by reflecting
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Fig. 3.4. Two compatible potentials for Example 4

the source from the right-hand side along the real axis: The corresponding potential
is also obtained by reflection, and since U1 is symmetric with respect to the real axis,
this reflection leaves the Cauchy data of the potential invariant.

The Neumann boundary values of U1 on ∂D are inhomogeneous, but they have
vanishing mean, as U1−Re z is a harmonic function in the exterior of D, and converges
to zero as |z| → ∞, cf., e.g., Kress [10, Theorem 6.28]. Therefore we can add a suitable
harmonic function, as in the previous example, to achieve homogeneous Neumann data
and corresponding Dirichlet data g, without changing the associated sources. Thus,
we easily conclude from Figure 3.4 that Hg = D for this example, although there is
no harmonic solution for the Cauchy problem in all of D. In other words, for this
example we have Sg = ∅ by virtue of Theorem 3.2.

A particular consequence of the last two examples is, that in order to derive any
useful information about the true source and its support, we need a different notion
of support to be used in the definition of (3.1).

4. Convex and discoidal source support. For similar reasons, Kusiak and
Sylvester proceed in [11] to introduce their concept of a convex scattering support,
which is obtained by intersecting for all compatible sources the convex hulls of their
supports. This definition has two possible analogs in our context, since we are studying
source problems in a bounded domain D rather than the full space.

Definition 4.1. The discoidal hull of a set S ⊂ D is the intersection of all closed
disks B ⊂ D enclosing S; if there are no such disks then the discoidal hull is defined
to be the whole of D. The discoidal support suppdF of a distribution supported in D
is the discoidal hull of its support. Finally, the discoidal source support Dg is defined
to be

Dg =
⋂

LF=g

suppdF. (4.1)

Likewise, the convex support suppcF is the convex hull of the support of F , and the
convex source support Cg is given by

Cg =
⋂

LF=g

suppcF. (4.2)

As before we set Cg = Dg = D, if g /∈ R(L).
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We mention that Cg is a proper subset of D, if g ∈ R(L), since D was assumed
to be convex. It is also important to note that the shape of the discoidal hull of a
set S ⊂ D depends on the underlying domain D, and that the discoidal hull and
the convex hull would be identical, if we set aside the restriction that the disks to
be intersected are subsets of D. In general the convex hull is a proper subset of the
discoidal hull. As a consequence,

supp∞F ⊂ suppcF ⊂ suppdF

for any distribution F , and thus, we always have

Sg ⊂ Cg ⊂ Dg. (4.3)

Returning to the discussion at the end of Sect. 3 we now prove that the convex
source support is sufficiently large to (approximately) carry a compatible source. Af-
terwards we investigate somewhat further the relation between the two newly defined
source support notions.

Theorem 4.2. Let g ∈ R(L). Then, given any ε > 0, there exists a source
Fε ∈ E ′

�(D) such that LFε = g and

Cg ⊂ suppcFε ⊂ Nε(Cg).

Moreover, Cg = ∅, if and only if g = 0.
Proof. We first assume that Cg 6= ∅. Then, if we fix an arbitrary ε > 0 such that

Nε(Cg) ⊂ D, we can find a finite number F1, . . . , Fn of compatible sources such that

C :=
⋂

k=1,...,n

suppcFk ⊂ Nε(Cg).

For each k = 1, . . . , n there exists a harmonic function uk that solves the Cauchy
problem (1.2) in H = D \ suppcFk. Since suppcFk, k = 1, . . . , n, are convex sets, any
two of the functions uk coincide in the subset of D where both are harmonic, and all
can be extended to the same (harmonic) function u that solves the Cauchy problem
in D \ C ⊃ D \ Nε(Cg). Thus, we can proceed as in the proof of Theorem 3.2, and
take F = ∆uε with

uε =

{

u in D \Nε(Cg),

0 in Nε(Cg),

as an appropriate source.
In the case that Cg = ∅ we can proceed in much the same way, i.e., we can find

a finite number of compatible sources and associated convex supports, such that the
intersection C of these convex sets is the empty set. As above the corresponding
harmonic potentials can be continued to a univalent harmonic function u that solves
the Cauchy problem in D \ C = D. As u has homogeneous Neumann boundary
values, it must be constant in D, and hence its trace g must vanish, as it is mean free.
Therefore, Cg = ∅, if and only if g = 0, which completes the proof.

Note that, by definition, Cg is itself a convex set, and by virtue of Theorem 4.2, it
can, in essence, be considered to be the smallest convex set supporting a compatible
source.

Theorem 4.3. The discoidal source support Dg is the discoidal hull of the convex
source support Cg; in general, the two sets differ from each other.
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Fig. 4.1. Convex and discoidal source supports for Example 3

Proof. Recall that we trivially have Cg ⊂ Dg, cf. (4.3). Moreover, since Dg is
defined as the intersection of discoidal supports, all of which are again intersections of
closed disks contained in D, we conclude that the discoidal hull of Cg is also contained
in Dg. To prove that Dg actually is the discoidal hull of Cg, we apply the previous
theorem, according to which any ε neighborhood of Cg carries a compatible source,
the discoidal hull of which enters the intersection in (4.1). This implies that Dg is
contained in the discoidal hull of any ε neighborhood of Cg. Since ε > 0 can be chosen
arbitrarily small, we eventually conclude that Dg is the discoidal hull of Cg. That the
two sets are different in general, can be seen from the example below, see Figure 4.1.

As a consequence of Theorems 4.2 and 4.3 we thus have
Corollary 4.4. For arbitrary g ∈ R(L)\{0} and ε > 0 there exists a compatible

source Fε ∈ E ′
�(D) such that

∅ 6= Dg ⊂ suppdFε ⊂ Nε(Dg).

Similar to the convex source support, the discoidal source support is thus the
smallest discoidal set (i.e., the smallest set defined by intersecting closed disks con-
tained within D) carrying a compatible source. In Sect. 5 we will derive a method to
approximate the discoidal source support numerically, when D is the unit disk.

Example 3 (cont.). Concerning Example 3, we conclude from (4.3) that
Cg contains at least the line segment in C connecting −1/2 to 1/2, as this is the
convex hull of these two points which have been shown to belong to Sg. Moreover,
since the particular source F constructed in that example has precisely this support,
we conclude that Cg = [−1/2, 1/2]. According to Theorem 4.3 the discoidal source
support is the discoidal hull of this interval. An easy geometric consideration reveals
that this discoidal hull is the intersection of the two disks B± which contain −1/2,
1/2, and ±i, respectively, on their boundaries, cf. Figure 4.1.

Example 4 (cont.). Returning to Example 4 we observe that the two sources
corresponding to the potentials shown in Figure 3.4, together with the one that is
obtained from the second one by reflection along the horizontal axis, have convex
supports whose intersection is the isosceles triangle connecting the three singularities
of U with the smaller real parts. Moreover, a slight modification of the first potential
shown in Figure 3.4 yields a solution of the source problem (1.1) for a source sup-
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Fig. 4.2. A potential for Example 4 which is defined by a compatible source supported on the
wings of the corresponding convex source support triangle

ported only on the wings of this triangle, and with singularities at all three corners
of the triangle. From the unique continuation principle for solutions of the Cauchy
problem (1.2) it follows that any other compatible source must contain these three
singularities in its convex support. As a consequence, the convex support of this
source coincides with the convex source support, and its discoidal hull with the dis-
coidal source support. In other words, this source has “minimal support”. Figure 4.2
shows the corresponding potential with the source support marked again by the two
boldfaced lines. The triangle made up of these two wings is the convex source support
for Example 4.

To conclude this section, one might ask – in view of Theorem 3.2 – whether the
convex source support Cg is the convex hull of some set determined merely from the
Cauchy problem (1.2), like, for example, the set Hg of (1.3). As we have already
seen, however, Hg does not qualify for a positive answer to this question, as it may
be empty for nonzero Dirichlet data, whereas Cg is never empty. In Section 6 we will
return to this problem.

5. Constructive approximation of the discoidal source support. In this
section we restrict ourselves to the case that D is the unit disk. Under this assumption
we show how to decide for a given closed disk B ⊂ D whether Dg ⊂ B, or not. We
start with concentric disks, and turn to the general case after that.

5.1. Concentric disks. Let u be the solution of (1.1), and g = u|∂D be the
given boundary potential. We denote the Fourier coefficients of g by {αj}

∞
j=−∞, i.e.,

αj =
1

2π

∫ π

−π

g(θ)e−ijθ dθ, j ∈ Z.

The following lemma provides a means to test if there exists a source which is
compatible with the data and supported in the concentric disk BR of radius 0 < R < 1.

Lemma 5.1. The function g ∈ C∞
� (∂D) can be written as g = LF for some

F ∈ E ′
�(D) with suppF ⊂ BR, if and only if there exists m ∈ Z such that

∞
∑

j=−∞

|αj |
2

R2|j|
〈j〉m <∞ , (5.1)
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where we have used the notation 〈j〉 = (1 + j2)1/2. For the ’if part’ of the claim one
can choose F that is supported on ∂BR.

Proof. We begin by assuming that there exists F ∈ E ′
�(D) with suppF ⊂ BR

such that g = u|∂D, where u solves the source problem (1.1). According to Corollary
2.2, the potential u belongs to H l(D) for some l ∈ Z. Hence, it follows from Theorems
6.5 and 7.3 of Chapter 2 in [13] that ψ := (u|D\BR

)|∂BR
is well defined and belongs

to H l−1/2(∂BR).
Let us denote the Fourier coefficients of ψ by

βj =
1

2π

∫ π

−π

u(R, θ)e−ijθ dθ, j ∈ Z,

where the integral should be understood in the sense of dual evaluation between
distributions and smooth functions. By using the unique solvability of the boundary
value problem

∆w = 0 in D \BR,
∂w

∂ν
= 0 on ∂D, w = ψ on ∂BR, (5.2)

in H l(D \ BR), and the solution’s continuous dependence on the Dirichlet data in
H l−1/2(∂BR) [13], it is easy to see that we have the representation, cf., e.g., Saranen
and Vainikko [15],

u(r, θ) =
∞
∑

j=−∞

βj

Rj +R−j

(

rj + r−j
)

eijθ, (r, θ) ∈ (R, 1) × (−π, π]. (5.3)

In particular, we deduce that

|αj | = 2
|βj |

Rj +R−j
≤ 2R|j||βj |, j ∈ Z.

As a consequence,

∞
∑

j=−∞

|αj |
2

R2|j|
〈j〉2l−1 ≤ 4

∞
∑

j=−∞

|βj |
2〈j〉2l−1 ≤ C ‖ψ‖2

Hl−1/2(∂BR) <∞,

where the second to last inequality can again be found in [15]. Setting m = 2l − 1
this proves the ’only if’ part of the claim.

Suppose next that (5.1) holds for some m ∈ Z. Without loss of generality we may
assume that m = −2l − 1, where l ∈ N0. Let us consider the distribution

u(r, θ) =

∞
∑

j=−∞

αj

2

(

rj + r−j
)

eijθ, (r, θ) ∈ (R, 1) × (−π, π].

It is easy to see that u is harmonic in D \BR and has the Cauchy data (g, 0) on ∂D.
Furthermore, it follows from (5.1) and the material in [15] that the (formal) trace of
u on ∂BR,

u(R, θ) =

∞
∑

j=−∞

αj

2

(

Rj +R−j
)

eijθ, θ ∈ (−π, π],
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Fig. 5.1. The conformal mapping

belongs to H−l−1/2(∂BR). By approximating u and u|∂BR
by their partial sums

(cf. [15]), and using the well posedness of the boundary value problem (5.2), it is
straightforward to deduce that u solves (5.2) where ψ = u|∂BR

, cf. [13]. In particular,
u belongs to H−l(D \BR).

Next we extend u by zero to BR. Let us be a bit more precise: By identifying the
elements of H l

0(D \ BR) with their zero extensions, H l
0(D \ BR) can be treated as a

closed subspace of H l
0(D), cf. [13]. We thus extend the continuous linear functional

u : H l
0(D \ BR) → C to the orthogonal complement H l

0(D \ BR)⊥ ⊂ H l
0(D) by

zero, and denote the extension by û. It is clear that û is well defined and belongs to
H−l(D) = (H l

0(D))′. Since

〈∆û, ϕ〉 = 〈û,∆ϕ〉 = 〈u,∆ϕ〉 = 〈∆u, ϕ〉 = 0

for every ϕ ∈ C∞
0 (D \BR) ⊂ H l

0(D \BR), and

〈∆û, η〉 = 〈û,∆η〉 = 0

for every η ∈ C∞
0 (BR) ⊂ H l

0(D \BR)⊥, the support of F := ∆û ∈ H−l−2(D)∩E ′
�(D)

belongs to ∂BR. Clearly, LF = g and the proof is complete.
Corollary 5.2. We have Dg ⊂ BR for some R < 1, if and only if

∞
∑

j=−∞

|αj |
2

(R+ ε)2|j|
<∞ (5.4)

for every ε > 0.
Proof. If Dg ⊂ BR then there exists a compatible source supported in Nε(Dg) ⊂

BR+ε for every ε > 0 by virtue of Corollary 4.4. The result now follows from (5.1).
Likewise, if (5.4) is satisfied then Lemma 5.1 guarantees for every ε > 0 the

existence of a compatible source Fε supported in BR+ε. Therefore, it follows from
(4.1) that Dg ⊂ BR.

5.2. Nonconcentric disks. Given a general closed disk B ⊂ D with nonempty
interior then there is a conformal map, more precisely a Möbius transformation
Φ : D → D that maps D onto itself and B onto some concentric disk BR, cf. Fig-
ure 5.1; the radius R = R(B) > 0 of BR is uniquely determined by B, cf., e.g.,
Henrici [9].

Let g be the given boundary potential, and denote the Fourier coefficients of
g ◦ Φ−1 by {αj(Φ)}∞j=−∞. The following lemma provides a means to test if there
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exists a compatible source that is supported in B.
Lemma 5.3. The function g ∈ C∞

� (∂D) can be written as g = LF for some
F ∈ E ′

�(D) with suppF ⊂ B, if and only if there exists m ∈ Z such that

∞
∑

j=−∞

|αj(Φ)|2

R(B)2|j|
〈j〉m <∞. (5.5)

For the ’if part’ of the claim one can choose F that is supported on ∂B.
Proof. We begin by assuming that there exists F ∈ E ′

�(D) with suppF ⊂ B
such that g = u|∂D, where u solves the source problem (1.1). Let us consider the
distribution ũ ∈ D′(D) defined by

〈ũ, ϕ〉 = 〈u, | detΦ | (ϕ ◦ Φ)〉 for all ϕ ∈ C∞
0 (D), (5.6)

where | detΦ | is the absolute value of the Jacobian determinant of Φ. Since Φ : D → D
is a smooth diffeomorphism, it is easy to check that ũ is well defined. Moreover, away
from the compact set Φ(sing supp u), the ’pull back’ ũ is just the composition map
u ◦Φ−1, and (5.6) corresponds to a change of variables in D. Here sing supp u ⊂ B is
the singular support of u, i.e., u is smooth in D \ sing supp u.

Since Φ is a conformal mapping we have

〈∆ũ, ϕ〉 = 〈ũ,∆ϕ〉 = 〈u, | detΦ | (∆ϕ ◦ Φ)〉 = 〈u,∆(ϕ ◦ Φ)〉 = 〈∆u, ϕ ◦ Φ〉

for all ϕ ∈ C∞
0 (D). Hence, the dual evaluation 〈∆ũ, ϕ〉 vanishes if suppϕ ⊂ D \BR,

which means that the source F̃ = ∆ũ ∈ E ′(D) is supported in BR. In addition, the
normal derivative of ũ vanishes on ∂D because ∂u

∂ν |∂D = 0 and Φ is conformal, and

so F̃ is mean free due to the divergence theorem. Since ũ|∂D = g ◦ Φ−1, there holds
that g ◦Φ−1 + c = LF̃ for a suitable c ∈ C, and the ’only if’ part of the claim follows
from Lemma 5.1.

Assume next that (5.5) holds for some m ∈ Z. According to Lemma 5.1 there
exists a source F̃ ∈ E ′

�(D) that is supported on ∂BR(B) and satisfies LF̃ = g ◦Φ−1 +c,
where c ∈ C is chosen such that g ◦ Φ−1 + c ∈ C∞

� (∂D). We denote by ũ the
associated solution of the source problem (1.1), with F replaced by F̃ , and define
another potential u ∈ D′(D) by

〈u, ϕ〉 = 〈ũ, | detΦ−1 | (ϕ ◦ Φ−1)〉 for all ϕ ∈ C∞
0 (D).

Reasoning as above we see that u equals ũ ◦ Φ away from the set Φ−1(sing supp ũ),
i.e, away from ∂B, and hence, the Laplacian of u vanishes in D \ ∂B, and ∂u

∂ν = 0
on ∂D. In particular, with the help of the divergence theorem, we see that F = ∆u
belongs to E ′

�(D) and is supported on ∂B. Clearly, LF = g ◦Φ−1 ◦Φ = g ∈ C∞
� (∂D),

and the proof is complete.
As in Sect. 5.1 we thus obtain the following criterion:
Corollary 5.4. We have Dg ⊂ B, if and only if

∞
∑

j=−∞

|αj(Φ)|2

(R+ ε)2|j|
<∞ (5.7)

for R = R(B) and every ε > 0.
Since Φ can be written down explicitly, Corollaries 5.2 and 5.4 can be used to

formulate an efficient numerical algorithm for locating the discoidal source support.
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Fig. 5.2. Exact and reconstructed discoidal source supports for Example 3

To this end one needs to find the asymptotic decay rate of the Fourier coefficients
αj(Φ) of g ◦Φ−1. This can be done with much the same algorithm that has been used
previously in [3] in some other context; the details of such an implementation are de-
scribed in [8]. Here we only include one example, namely the numerical reconstruction
of the discoidal source support Dg from Example 3, where g is known analytically.
We refer to [8] for more numerical results, including also the case of noisy data.

Figure 5.2 shows our reconstruction on the right, together with the exact solution
on the left for the ease of comparison; see also Figure 4.1. In our reconstruction we
have plotted all the circles that were found to enclose a compatible source, and the
blank area in the middle marks the intersection of these circles, i.e., the (approxi-
mated) discoidal source support. The bold faced horizontal line is the convex source
support for comparison.

As can be seen the numerical reconstruction is somewhat smaller than the true
discoidal source support, and does not even contain the singularities at the two end-
points of the interval. This is caused by the fact that in many instances the initial
decay of the Fourier coefficients is somewhat more pronounced than on the long run.
As a consequence, the algorithm consistently overestimates the decay rates of the
Fourier coefficients αj(Φ), and accordingly, underestimates the radii of the relevant
disks.

6. An attempt to characterize the two source supports. In Theorem 3.2
we have been able to establish a strong connection between the two problems (1.1)
and (1.2) in terms of the simply connected source support Sg and the corresponding
set Hg defined via the Cauchy problem (1.2). In the remainder of this paper we try
to reveal similar links for the discoidal and the convex source supports. As we have
pointed out before, the set Hg is useless for this purpose, so that we need to search
for something else. In our treatment we will focus on the convex source support, and
we only briefly comment on the discoidal source support thereafter. We remark that
our analysis applies to any bounded and convex domain D ⊂ R2.

To begin with, consider a solution u of the Cauchy problem (1.2), and let H be
the associated domain on which u lives. Any point x on the boundary of D \H will
be called a singular point of ∂(D \H), if there exists some arc Γ ⊂ H such that u fails
to have a harmonic extension into any neighborhood of x, when approaching x along
Γ; otherwise, we call x a regular point of ∂(D \H). Poles, or branching points of u
are examples of singular points. Note that we have shown in the proof of Theorem 4.2
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that there exists a univalent solution of (1.2) in H = D \ Cg.
Example 3 (cont.). If we choose H = D \ Cg in Example 3 then the two

branching points ±1/2 of u are singular points of ∂(Cg); all points within the open
interval (−1/2, 1/2) admit a harmonic extension when approaching them from either
of the two sides, and are thus regular points of ∂(Cg).

Proposition 6.1. The convex source support Cg is the convex hull of the singular
points of ∂(Cg).

Proof. We need to distinguish three possible cases.

1. The result is trivially correct if Cg is the empty set. If Cg consists of one
single point then this must be a singular point of ∂(Cg), for otherwise there exists
a harmonic extension of the Cauchy data into the full domain D by virtue of the
Monodromy Theorem, and hence, g = 0 in contradiction to Cg 6= ∅, cf. Theorem 4.2.

2. Assume next that Cg is a line segment. Then we need to show that both end
points of Cg are singular points of ∂(Cg). In fact, if this is not the case then the
corresponding potential u would have a harmonic extension into the neighborhood of
one of the two end points, and there would exist a compatible source supported on a
proper subset of this line segment, in contradiction to (4.2).

3. If Cg is neither a point nor a line segment then its interior is nonempty. In this
case we denote by C the convex hull of the singular points of ∂(Cg); obviously, C is
contained in Cg. If Cg\C 6= ∅ then we can choose ε > 0 so small that Cg\Nε(C) has at
least one (closed) component with nonempty interior, which we select and denote by
Cc, cf. Figure 6.1 (left). The intersection ∂(Cg)∩∂Cc consists of regular points of ∂(Cg)
only. So we can develop u in any of these boundary points into a Taylor series which
converges in an open neighborhood of this point, and repeating this construction
for all these points we obtain an open cover of the compact set ∂(Cg) ∩ ∂Cc. It
follows that this cover has a finite subcover, and we can use the Monodromy Theorem
to conclude that u has a harmonic extension into Cg ∩ Nδ(∂(Cg) ∩ ∂Cc) for some
positive δ > 0. Since Cc has nonempty interior it follows that the convex hull C ′ of
Cg\Nδ(∂(Cg)∩∂Cc) is a proper subset of Cg, and that the aforementioned extension of
u solves the Cauchy problem (1.2) in H = D \C ′, cf. Figure 6.1 (right): the boundary
of C ′ is the inner boldfaced line. With the help of zero extensions we conclude that
any neighborhood of C ′ carries a compatible source, which contradicts the definition
of Cg.

Proposition 6.1 is not completely satisfying as its characterization of Cg requires
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Fig. 6.2. Yet another compatible potential for Example 4 and the corresponding source support

the knowledge of Cg, and therefore is not constructive. On the other hand, there seems
to be little hope to obtain a general characterization of Cg in terms of singularities of
solutions of (1.2) without prior knowledge about the true location of Cg.

Example 4 (cont.). To enlighten this last statement consider Example 4 once
again. The global harmonic function U has four singularities zi, i = 1, . . . , 4, and
these are the only possible singular points of the boundary of some set D \H. Two
of these singularities are real, the other two are not; recall that the four points are
highlighted as small circles in Figure 3.4. The convex source support Cg indicated in
Figure 4.2, however, is the convex hull of only three of these, all of which are singular
points on ∂(Cg). The fourth singularity, i.e., the real one with the larger real part –
let us call it z1 – does not belong to Cg. Still, there exists a solution u of the Cauchy
problem, e.g., the one shown in Figure 6.2, which extends harmonically up to the
point z1, where it has a singularity. Note that this solution differs from the one from
Figure 4.2, as the two boldfaced lines, which carry the corresponding source, meet
at z1 and not at the neighboring real singularity. Accordingly, the convex support of
this source is slightly larger than the one from Figure 4.2. But the potential shown
here has a harmonic extension into z1 from the right, and for this reason z1 is not a
singular point of the boundary of the convex hull of the associated source support.

Remark 6.2. Much the same considerations are possible for the discoidal source
support. In view of Theorem 4.3, however, we have restricted our attention to the
convex source support only.

7. Concluding remarks. We have introduced two reasonable notions for min-
imal source supports, i.e., the convex and the discoidal source support. We have also
outlined a constructive algorithm to compute the discoidal source support when D is
the unit disk. We refer to [8] for more details of the numerical implementation, and
for an application of these results to impedance tomography.

Finally, it should be mentioned that Lemma 5.3 and Corollary 5.4 can be gen-
eralized to an arbitrary simply connected domain D ⊂ R

2 and the closure of some
other simply connected domain B ⊂ D, by making use of the full generality of the
Riemann mapping theorem for doubly connected domains, cf., e.g., [9], or Ahlfors [1].
In such a case, however, the notion of a discoidal hull has to be modified accordingly,
as, in general, the corresponding conformal maps no longer map disks onto disks.
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